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Abstract:

In this paper, some geometric properties for certain of meromorphic integral
Operator in the punctured open unit disk are studied. Moreover, some
supplementary conditions for which the class of integral operators to be in
subclasses of meromorphic functions are determined.

Keywords: Analytic function, starlike functions, convex functions, open unit
disk.
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1- Introduction

Let U ={z € C: |z] < 1}, be the open unit disc in the complex plane C, U= U\{0}, the
punctured open unit disk and H(U) = {f : U —— C : fis holomorphic in U}. Fora e C
andne N (N={0,1,2,..1}), let Ha,n] = {f e H(U) ,

f(z)=a+a,z"+a,,2""+---, z €U. Let = denote the class of functions of the

n+1

form

which are analytic in the punctured open unit disk U-.

. (1.1)
f(z) = -+ Z a,z"
o~ 1’7‘:0
We say that a function f € X is meromorphic starlike function of order a(0 < a < 1),
and belongs to the class X*(a), if it satisfies the inequality

()

A function f € X is a meromorphic convex function of order a(0 < a < 1), if f satisfies
the following inequality and we denote this class by Z(«).

R (1 N z.f”(Z)) - (1.3)
f'(z)
For f € X, Wang et al. [11] introduced and studied the subclasses Zm(d) and Zn() of =
as the following.
A function f € X is said to be in the class Zm(d), 0 > 1, if f satisfies the following
inequality:

o (2G) . (14)
5]%( 5 ) < (6>1,2€0)

A function f €  is said to be in the class 2n(d), 0 > 1, if f satisfies the following
inequality:

(L5)

w0 S
El%(‘f,(z)+1)<5 (6>1, ze )

For « < 1 < ¢, we define the following two subclasses of meromorphic
functions ( [3], [4] and [5]).

A function f € X is said to be in the class Z*(a, 5), if f satisfies the following
inequality:



a< —R (zf’(z)) <0, a<l<d €U
f(z) (1.6)

A function f € X is said to be in the class ZK(a,9), if f satisfies the following
inequality:

"
(:y<—%(z£((z))+1)<6, a<l<d z€elU

If we consider§ —>oo in the subclasses X" («,6) and XK (a,5), we obtain

(1.7)

respectively, the familiar subclasses X" () and X, (e), 0 <a < 1. In addition, if we

consider a — 0in the subclasses X" (,6)and XK (&, 8), we obtain respectively,

the subclasses X, (&),and X (5), 6> 1.

In the literature several integral operators of meromorphic functions in the punctured
open unit disk have been investigated and studied by many authors (cf., e.g., [1-2, 5-
10]).

Mohammed and Darus, introduced and studied [1] the following meromorphic integral
operator,

c.u|’“

Tao(£)(2) = ( f 7 3df)

(1.8)
(fex, v,B¢€ C, BeC\{0}, Ry - B) > )

In this paper we will study the properties of the image of a function f belongs the above
subclasses through the integral operator Jg ,,

In order to prove our main results, we shall need the following lemmas due to Alina
Totoi

[5]:
Lemma 1.1 Letn € Nx 0,5 € R,y € Cwith R [y — af] > 0. If g € H[q(0),n] with g(0) € R
and q(0) > «, then we have

v = Ba(z)

Lemma 1.2 Let n € N+, € R,y € C with <[y—dp] > 0. If g € H[q(0),n] with q(0) € R
and q(0) < ¢, then we have

R {q(z) = W} >a=Rq(z) >a, z€U (1.9)

z2q'(2) } i (1.10)
Reglz)+ ————— ¢ <d=MNq(z) <o, z€U
{at+ 250 2)



2- Main result

Our first result involving the properties of the image of a function f € £K(a,9), through
the integral operator Jg, defined by (1.8).

1 1 ¢85 Ry
Theorem 2.1. Letﬁ>0,yeC,a<1<5and§((‘H'l) <1 <3(0+1) < B,

If f € =K(at,8), then J5.7 () € Z*(z(a+1),50+ 1)) where Jg, (2) is the integral
operator given by (1.8).

Proof. From (1.8), we have
2~ 28 ~ ] I 2y—1 ot Ié]
P (o (N =200 9) [ £ (=r ) . on
0
Differentiating (2.1) with respect to z and by simple computation, we obtain
3‘7,;-} (Z) i 23 _ (ﬁf - ﬂ) / ]
( 700 5 ) Jee @) =S5 (@) 02

Differentiating (2.2) logarithmically and by simple computation, we get

82250 () + B+ 12T, (1) o0 1334 (2)) _ 2f"(2)
: +(28-1) = b (2.3)
BzT3, () + 7T (2) Ts.4(2) f'(z) '
We can write the left-hand side of (2.3), as the following:
o 275,(2)
B == 1 / ’ -
| (Jﬁw(z) ' ) o +(28 - 1)2%” &) _ 52" 2) &4
8+ 2] 3G TG
4 8. 4
Let
z .{;ﬁ (2) (2.5)
a(z) = =
T (2)

such that q(z) is analytic in U, with g (0) = 1. Differentiating q(z) logarithmically, we
obtain

z2q'(2) 2J3., (2)
—q(z — 14 2B 26
B TE N E )

Then (2.4) can be written as

(R} oo

Since f € ZK(a,0), o < 1 <4, then



a < —R (z}{IE(’:;) — 1) <09, 2€eU (28)

Which is equivalent to

%((H 1) < %3?{— (”f,’;(”)) - 1)} - % < %(5+ 1) 29

Using (2.7) and (2.9) we get

L IR
D <R+ T <0+ ) @10

1 _ 1 /5
sincez (@ +1) < q(0) =1 <504 1yand0o<2y—p6+1) < 2y— fla+ 1)
We obtain from (2.10), after applying Lemma 1.1 and Lemma 1.2, that

h 1,
5 la+1) <Rg(z) <5(0+1) (2.11)

which is equivalent to

1 NN 1

That is 5. (2) € E*(% (a+1), % (6+1))
If we consider o — 0 in the above theorem, we obtain the next corollary:

S
Corollary 22. Let s> 0ye C,o>1and 5 = 20 T1) > 1 tre 5 (5) then

1
Ts (2) € By (i (0 + 1)) , where Jg, (2) is the integral operator given by (1.8).

Ry : 1
Theorem 2.3. Letf<0yeCa<l1l<g, and & Sjzlatl) <1< 3 (0+ 1)
1

1

2
If f € =K(a,), then 757 (2) € (5 (a+1),50+ 1)), where Jg, (2) is the integral
operator given by (1.8).

Proof. From (2.7), we know that

2q'(2) 1 { (zf"(z) ) } 1
)t = o4 — F1) b+ 2
12) 2v—2Bq(2) 2 f'(z) 2 (2.13)
/MO
Where 9(2) = JIs.~+(%) is analytic in U.

By using the same steps as in the proof of Theorem 2.1 and since f € £K(¢,0),a <1 <,
we receive

1, 2q'(2) 1
5((}4—1) <%{f1(2)+m} < 5(5+1) (2.14)



sinces (@ +1) < q(0) =1 < 5(04 1yand 0< 2y — B(6 + 1) <2y — Bl + 1), then

by applying Lemma 1.1 and Lemma 1.2, we obtain from (2.14) that

s(a+1) <Rg(z) <30+ 1) where

2T, (%)
1) =725

Thatis 73 (2) € X' (5 (@ +1),5 (6 + 1))
If we consider J — oo in the above theorem, we obtain the next corollary:

Ry <1
Corollary 2.4. Let p<0,ye Cand 3 <sle+l) <l Iffe Z’“(O‘), then Js , (2)
€

*( 1 )
X4 (3 (@ +1) where Js » (2) is the integral operator given by (1.8).
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